Use of Data Mining for Prediction of Customer Loyalty

This  article  discusses  the  analysis  of  customer  loyalty  using  three  data  mining  methods:  C4.5,Naive Bayes, and Nearest Neighbor Algorithms and real-world  empirical  data.  The  data  contain  ten  attributes related to the customer loyalty and are obtained from a national  multimedia ...

Full description

Bibliographic Details
Main Authors: Andri Wijaya, Abba Suganda Girsang
Format: Article
Language:English
Published: Bina Nusantara University 2015-05-01
Series:CommIT Journal
Subjects:
Online Access:https://journal.binus.ac.id/index.php/commit/article/view/1660
id doaj-25e7a406c7f447ca9b560af1401b2961
record_format Article
spelling doaj-25e7a406c7f447ca9b560af1401b29612020-11-25T01:58:35ZengBina Nusantara UniversityCommIT Journal1979-24842460-70102015-05-01101414710.21512/commit.v10i1.16601399Use of Data Mining for Prediction of Customer LoyaltyAndri Wijaya0Abba Suganda Girsang1Bina Nusantara UniversityBina Nusantara UniversityThis  article  discusses  the  analysis  of  customer  loyalty  using  three  data  mining  methods:  C4.5,Naive Bayes, and Nearest Neighbor Algorithms and real-world  empirical  data.  The  data  contain  ten  attributes related to the customer loyalty and are obtained from a national  multimedia  company  in  Indonesia.  The  dataset contains 2269 records. The study also evaluates the effects of  the  size  of  the  training  data  to  the  accuracy  of  the classification.  The  results  suggest  that  C4.5  algorithm produces   highest classification   accuracy   at   the   order of  81%  followed  by  the  methods  of  Naive  Bayes  76% and  Nearest  Neighbor  55%.  In  addition,  the  numerical evaluation  also  suggests  that  the  proportion  of  80%  is optimal  for  the  training  set.https://journal.binus.ac.id/index.php/commit/article/view/1660Customer loyaltyAttribute analysisC4.5Naiv¨e BayesNearest Neighbor Algorithmghbor algorithms
collection DOAJ
language English
format Article
sources DOAJ
author Andri Wijaya
Abba Suganda Girsang
spellingShingle Andri Wijaya
Abba Suganda Girsang
Use of Data Mining for Prediction of Customer Loyalty
CommIT Journal
Customer loyalty
Attribute analysis
C4.5
Naiv¨e Bayes
Nearest Neighbor Algorithmghbor algorithms
author_facet Andri Wijaya
Abba Suganda Girsang
author_sort Andri Wijaya
title Use of Data Mining for Prediction of Customer Loyalty
title_short Use of Data Mining for Prediction of Customer Loyalty
title_full Use of Data Mining for Prediction of Customer Loyalty
title_fullStr Use of Data Mining for Prediction of Customer Loyalty
title_full_unstemmed Use of Data Mining for Prediction of Customer Loyalty
title_sort use of data mining for prediction of customer loyalty
publisher Bina Nusantara University
series CommIT Journal
issn 1979-2484
2460-7010
publishDate 2015-05-01
description This  article  discusses  the  analysis  of  customer  loyalty  using  three  data  mining  methods:  C4.5,Naive Bayes, and Nearest Neighbor Algorithms and real-world  empirical  data.  The  data  contain  ten  attributes related to the customer loyalty and are obtained from a national  multimedia  company  in  Indonesia.  The  dataset contains 2269 records. The study also evaluates the effects of  the  size  of  the  training  data  to  the  accuracy  of  the classification.  The  results  suggest  that  C4.5  algorithm produces   highest classification   accuracy   at   the   order of  81%  followed  by  the  methods  of  Naive  Bayes  76% and  Nearest  Neighbor  55%.  In  addition,  the  numerical evaluation  also  suggests  that  the  proportion  of  80%  is optimal  for  the  training  set.
topic Customer loyalty
Attribute analysis
C4.5
Naiv¨e Bayes
Nearest Neighbor Algorithmghbor algorithms
url https://journal.binus.ac.id/index.php/commit/article/view/1660
work_keys_str_mv AT andriwijaya useofdataminingforpredictionofcustomerloyalty
AT abbasugandagirsang useofdataminingforpredictionofcustomerloyalty
_version_ 1724968768129466368