Unsupervised Graph Representation Learning With Variable Heat Kernel
Graph representation learning aims to learn a low-dimension latent representation of nodes, and the learned representation is used for downstream graph analysis tasks. However, most of the existing graph embedding models focus on how to aggregate all the neighborhood node features to encode the sema...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8957535/ |