The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.

P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promotin...

Full description

Bibliographic Details
Main Authors: Evgeny M Makarov, Tatyana A Shtam, Roman A Kovalev, Rimma A Pantina, Elena Yu Varfolomeeva, Michael V Filatov
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5621691?pdf=render
id doaj-20e072f7d1cd4fdf93dab958468fdb29
record_format Article
spelling doaj-20e072f7d1cd4fdf93dab958468fdb292020-11-25T02:41:26ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01129e018512610.1371/journal.pone.0185126The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.Evgeny M MakarovTatyana A ShtamRoman A KovalevRimma A PantinaElena Yu VarfolomeevaMichael V FilatovP53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3' splice site (ss) which is more often used instead of the authentic upstream 3' ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.http://europepmc.org/articles/PMC5621691?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Evgeny M Makarov
Tatyana A Shtam
Roman A Kovalev
Rimma A Pantina
Elena Yu Varfolomeeva
Michael V Filatov
spellingShingle Evgeny M Makarov
Tatyana A Shtam
Roman A Kovalev
Rimma A Pantina
Elena Yu Varfolomeeva
Michael V Filatov
The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
PLoS ONE
author_facet Evgeny M Makarov
Tatyana A Shtam
Roman A Kovalev
Rimma A Pantina
Elena Yu Varfolomeeva
Michael V Filatov
author_sort Evgeny M Makarov
title The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
title_short The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
title_full The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
title_fullStr The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
title_full_unstemmed The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
title_sort rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2017-01-01
description P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3' splice site (ss) which is more often used instead of the authentic upstream 3' ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.
url http://europepmc.org/articles/PMC5621691?pdf=render
work_keys_str_mv AT evgenymmakarov therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT tatyanaashtam therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT romanakovalev therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT rimmaapantina therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT elenayuvarfolomeeva therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT michaelvfilatov therarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT evgenymmakarov rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT tatyanaashtam rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT romanakovalev rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT rimmaapantina rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT elenayuvarfolomeeva rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
AT michaelvfilatov rarenonsensemutationinp53triggersalternativesplicingtoproduceaproteincapableofinducingapoptosis
_version_ 1724778372138008576