Optimality Assessment of Memory-Bounded ConvNets Deployed on Resource-Constrained RISC Cores
A cost-effective implementation of Convolutional Neural Nets on the mobile edge of the Internet-of-Things (IoT) requires smart optimizations to fit large models into memory-constrained cores. Reduction methods that use a joint combination of filter pruning and weight quantization have proven efficie...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8877713/ |