Summary: | <p>Abstract</p> <p>Background</p> <p>We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1) variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env) protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY), creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism.</p> <p>Results</p> <p>Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R). This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity.</p> <p>Conclusion</p> <p>The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY) can be corrected by a second site mutation in Env (GIA-SKY-G431R) that affects the interaction with the CD4 receptor.</p>
|