Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B<sub>4</sub>C/Si Nano-Multilayers
Pulsed-radio frequency glow discharge optical emission spectrometry (Pulsed-RF-GDOES) has exhibited great potential for high resolution (HR) depth profiling. In this paper, the measured GDOES depth profile of 60 × Mo (3 nm)/B<sub>4</sub>C (0.3 nm)/Si (3.7 nm) was quantified by employing...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Coatings |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-6412/11/6/612 |
Summary: | Pulsed-radio frequency glow discharge optical emission spectrometry (Pulsed-RF-GDOES) has exhibited great potential for high resolution (HR) depth profiling. In this paper, the measured GDOES depth profile of 60 × Mo (3 nm)/B<sub>4</sub>C (0.3 nm)/Si (3.7 nm) was quantified by employing the newly extended Mixing-Roughness-Information depth (MRI) model. We evaluated the influences of the thickness and sputtering rate on the depth profile of very thin layers. We demonstrated that a method using the full width at half maximum (FWHM) value of the measured time-concentration profile for determining the sputtering rate and the corresponding thickness was not reliable if preferential sputtering took place upon depth profiling. |
---|---|
ISSN: | 2079-6412 |