Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions
Charcoal rot is a major disease of soybean (<i>Glycine max</i>) caused by <i>Macrophomina phaseolina</i> and results in significant loss in yield and seed quality. The effects of charcoal rot on seed composition (seed protein, oil, and fatty acids), a component of seed qualit...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/10/9/1801 |
id |
doaj-1482f781ad7a449bbb14d6da7f8733d7 |
---|---|
record_format |
Article |
spelling |
doaj-1482f781ad7a449bbb14d6da7f8733d72021-09-26T00:58:52ZengMDPI AGPlants2223-77472021-08-01101801180110.3390/plants10091801Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated ConditionsNacer Bellaloui0Alemu Mengistu1James R. Smith2Hamed K. Abbas3Cesare Accinelli4W. Thomas Shier5Crop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Road, Stoneville, MS 38776, USACrop Genetics Research Unit, USDA, Agricultural Research Service, Jackson, TN 38301, USACrop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Road, Stoneville, MS 38776, USABiological Control of Pests Research Unit, USDA, Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USADepartment of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 44, 40127 Bologna, ItalyDepartment of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 308 Harvard Street, SE, Minneapolis, MN 55455, USACharcoal rot is a major disease of soybean (<i>Glycine max</i>) caused by <i>Macrophomina phaseolina</i> and results in significant loss in yield and seed quality. The effects of charcoal rot on seed composition (seed protein, oil, and fatty acids), a component of seed quality, is not well understood. Therefore, the objective of this research was to investigate the impact of charcoal rot on seed protein, oil, and fatty acids in different soybean genotypes differing in their charcoal rot susceptibility under irrigated and non-irrigated conditions. Two field experiments were conducted in 2012 and 2013 in Jackson, TN, USA. Thirteen genotypes differing in charcoal rot resistance (moderately resistant and susceptible) were evaluated. Under non-irrigated conditions, moderately resistant genotypes showed either no change or increased protein and oleic acid but had lower linolenic acid. Under non-irrigated conditions, most of the susceptible genotypes showed lower protein and linolenic acid but higher oleic acid. Most of the moderately resistant genotypes had higher protein than susceptible genotypes under irrigated and non-irrigated conditions but lower oil than susceptible genotypes. The different responses among genotypes for protein, oil, oleic acid, and linolenic acid observed in each year may be due to both genotype tolerance to drought and environmental conditions, especially heat differences in each year (2012 was warmer than 2013). This research showed that the increases in protein and oleic acid and the decrease in linolenic acid may be a possible physiological mechanism underlying the plant’s responses to the charcoal rot infection. This research further helps scientists understand the impact of irrigated and non-irrigated conditions on seed nutrition changes, using resistant and susceptible genotypes.https://www.mdpi.com/2223-7747/10/9/1801charcoal rotsoybean nutritionsoybean proteinsoybean oilsoybean fatty oil<i>Macrophomina phaseolina</i> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nacer Bellaloui Alemu Mengistu James R. Smith Hamed K. Abbas Cesare Accinelli W. Thomas Shier |
spellingShingle |
Nacer Bellaloui Alemu Mengistu James R. Smith Hamed K. Abbas Cesare Accinelli W. Thomas Shier Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions Plants charcoal rot soybean nutrition soybean protein soybean oil soybean fatty oil <i>Macrophomina phaseolina</i> |
author_facet |
Nacer Bellaloui Alemu Mengistu James R. Smith Hamed K. Abbas Cesare Accinelli W. Thomas Shier |
author_sort |
Nacer Bellaloui |
title |
Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions |
title_short |
Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions |
title_full |
Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions |
title_fullStr |
Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions |
title_full_unstemmed |
Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions |
title_sort |
effects of charcoal rot on soybean seed composition in soybean genotypes that differ in charcoal rot resistance under irrigated and non-irrigated conditions |
publisher |
MDPI AG |
series |
Plants |
issn |
2223-7747 |
publishDate |
2021-08-01 |
description |
Charcoal rot is a major disease of soybean (<i>Glycine max</i>) caused by <i>Macrophomina phaseolina</i> and results in significant loss in yield and seed quality. The effects of charcoal rot on seed composition (seed protein, oil, and fatty acids), a component of seed quality, is not well understood. Therefore, the objective of this research was to investigate the impact of charcoal rot on seed protein, oil, and fatty acids in different soybean genotypes differing in their charcoal rot susceptibility under irrigated and non-irrigated conditions. Two field experiments were conducted in 2012 and 2013 in Jackson, TN, USA. Thirteen genotypes differing in charcoal rot resistance (moderately resistant and susceptible) were evaluated. Under non-irrigated conditions, moderately resistant genotypes showed either no change or increased protein and oleic acid but had lower linolenic acid. Under non-irrigated conditions, most of the susceptible genotypes showed lower protein and linolenic acid but higher oleic acid. Most of the moderately resistant genotypes had higher protein than susceptible genotypes under irrigated and non-irrigated conditions but lower oil than susceptible genotypes. The different responses among genotypes for protein, oil, oleic acid, and linolenic acid observed in each year may be due to both genotype tolerance to drought and environmental conditions, especially heat differences in each year (2012 was warmer than 2013). This research showed that the increases in protein and oleic acid and the decrease in linolenic acid may be a possible physiological mechanism underlying the plant’s responses to the charcoal rot infection. This research further helps scientists understand the impact of irrigated and non-irrigated conditions on seed nutrition changes, using resistant and susceptible genotypes. |
topic |
charcoal rot soybean nutrition soybean protein soybean oil soybean fatty oil <i>Macrophomina phaseolina</i> |
url |
https://www.mdpi.com/2223-7747/10/9/1801 |
work_keys_str_mv |
AT nacerbellaloui effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions AT alemumengistu effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions AT jamesrsmith effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions AT hamedkabbas effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions AT cesareaccinelli effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions AT wthomasshier effectsofcharcoalrotonsoybeanseedcompositioninsoybeangenotypesthatdifferincharcoalrotresistanceunderirrigatedandnonirrigatedconditions |
_version_ |
1716869369991004160 |