Summary: | As one of the important components of intelligent warehousing logistics, Automated Guided Vehicles (AGVs) have greatly improved the efficiency of warehousing operations. AGVs are responsible for the delivery of goods in warehousing and logistics, and it is extremely important to maintain a stable running state. In this paper, an AGV in-situ steering dynamic model is established according to the actual size, and the center deviation phenomenon during AGV steering is theoretically analyzed to obtain the parameters that affect the AGV’s in-situ steering stability. Secondly, the dynamic simulation method is used to analyze the law of the stability of the AGV in-situ steering parameters to verify the correctness of the theoretical derivation equation. According to the analysis results, the motion parameters related to AGV in-situ steering are analyzed, and a reasonable design scheme is given. Based on the optimized fork-type AGV, the AGV in-situ steering control strategy is studied, and the adaptive fuzzy PID control algorithm is used to construct the fork-type AGV steering control system. Then the software and hardware design of the AGV steering control system is carried out. The optimized fork-type AGV has been turned to work stably after commissioning, meeting the actual work requirements.
|