Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease

Monocyte chemoattractant protein 1 (MCP1) affects the chemotaxis of monocytes and is a key chemokine closely related to the development of atherosclerosis (AS). Compared with healthy controls, coronary heart disease (CAD) patients show significantly upregulated plasma concentrations and mRNA express...

Full description

Bibliographic Details
Main Authors: Sujie Jia, Shuang Yang, Pei Du, Keqin Gao, Yu Cao, Baige Yao, Ren Guo, Ming Zhao
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-11-01
Series:Frontiers in Genetics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fgene.2019.01098/full
id doaj-0e09b13f96c04e6b89833587db0c69b6
record_format Article
spelling doaj-0e09b13f96c04e6b89833587db0c69b62020-11-25T01:17:23ZengFrontiers Media S.A.Frontiers in Genetics1664-80212019-11-011010.3389/fgene.2019.01098481511Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart DiseaseSujie Jia0Sujie Jia1Shuang Yang2Pei Du3Keqin Gao4Keqin Gao5Yu Cao6Baige Yao7Ren Guo8Ming Zhao9Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaCenter of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, Weifang People’s Hospital, Weifang, ChinaDapartment of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaDepartment of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, ChinaDapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, ChinaMonocyte chemoattractant protein 1 (MCP1) affects the chemotaxis of monocytes and is a key chemokine closely related to the development of atherosclerosis (AS). Compared with healthy controls, coronary heart disease (CAD) patients show significantly upregulated plasma concentrations and mRNA expression of MCP1 in CD14+ monocytes. However, the specific regulatory mechanism of MCP1 overexpression in AS is still unclear. Our previous research indicated that there was no significant difference in the H3K4 and H3K27 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD versus non-CAD patients, but the H3 and H4 acetylation of the MCP1 promoter was increased in CD14+ monocytes from CAD patients. We further found that the H3K9 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD patients was decreased, but the DNA methylation levels did not differ markedly from those in non-CAD patients. Our previous work showed that the level of regulatory factor X1 (RFX1) was markedly reduced in CD14+ monocytes from CAD patients and played an important role in the progression of AS by regulating epigenetic modification. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contribute to the overexpression of MCP1 in activated monocytes in CAD patients. We found that the enrichment of RFX1, histone deacetylase 1 (HDAC1), and suppressor of variegation 3–9 homolog 1 (SUV39H1) in the MCP1 gene promoter region were decreased in CD14+ monocytes from CAD patients and in healthy CD14+ monocytes treated with low-density lipoprotein (LDL). Chromatin immunoprecipitation (ChIP) assays identified MCP1 as a target gene of RFX1. Overexpression of RFX1 increased the recruitments of HDAC1 and SUV39H1 and inhibited the expression of MCP1 in CD14+ monocytes. In contrast, knockdown of RFX1 in CD14+ monocytes reduced the recruitments of HDAC1 and SUV39H1 in the MCP1 promoter region, thereby facilitating H3 and H4 acetylation and H3K9 tri-methylation in this region. In conclusion, our results indicated that RFX1 expression deficiency in CD14+ monocytes from CAD patients contributed to MCP1 overexpression via a deficiency of recruitments of HDAC1 and SUV39H1 in the MCP1 promoter, which highlighted the vital role of RFX1 in the pathogenesis of CAD.https://www.frontiersin.org/article/10.3389/fgene.2019.01098/fullmonocyteshistone acetylationmonocyte chemoattractant protein-1regulatory factor X1epigenetics
collection DOAJ
language English
format Article
sources DOAJ
author Sujie Jia
Sujie Jia
Shuang Yang
Pei Du
Keqin Gao
Keqin Gao
Yu Cao
Baige Yao
Ren Guo
Ming Zhao
spellingShingle Sujie Jia
Sujie Jia
Shuang Yang
Pei Du
Keqin Gao
Keqin Gao
Yu Cao
Baige Yao
Ren Guo
Ming Zhao
Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
Frontiers in Genetics
monocytes
histone acetylation
monocyte chemoattractant protein-1
regulatory factor X1
epigenetics
author_facet Sujie Jia
Sujie Jia
Shuang Yang
Pei Du
Keqin Gao
Keqin Gao
Yu Cao
Baige Yao
Ren Guo
Ming Zhao
author_sort Sujie Jia
title Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
title_short Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
title_full Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
title_fullStr Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
title_full_unstemmed Regulatory Factor X1 Downregulation Contributes to Monocyte Chemoattractant Protein-1 Overexpression in CD14+ Monocytes via Epigenetic Mechanisms in Coronary Heart Disease
title_sort regulatory factor x1 downregulation contributes to monocyte chemoattractant protein-1 overexpression in cd14+ monocytes via epigenetic mechanisms in coronary heart disease
publisher Frontiers Media S.A.
series Frontiers in Genetics
issn 1664-8021
publishDate 2019-11-01
description Monocyte chemoattractant protein 1 (MCP1) affects the chemotaxis of monocytes and is a key chemokine closely related to the development of atherosclerosis (AS). Compared with healthy controls, coronary heart disease (CAD) patients show significantly upregulated plasma concentrations and mRNA expression of MCP1 in CD14+ monocytes. However, the specific regulatory mechanism of MCP1 overexpression in AS is still unclear. Our previous research indicated that there was no significant difference in the H3K4 and H3K27 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD versus non-CAD patients, but the H3 and H4 acetylation of the MCP1 promoter was increased in CD14+ monocytes from CAD patients. We further found that the H3K9 tri-methylation of the MCP1 promoter in CD14+ monocytes from CAD patients was decreased, but the DNA methylation levels did not differ markedly from those in non-CAD patients. Our previous work showed that the level of regulatory factor X1 (RFX1) was markedly reduced in CD14+ monocytes from CAD patients and played an important role in the progression of AS by regulating epigenetic modification. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contribute to the overexpression of MCP1 in activated monocytes in CAD patients. We found that the enrichment of RFX1, histone deacetylase 1 (HDAC1), and suppressor of variegation 3–9 homolog 1 (SUV39H1) in the MCP1 gene promoter region were decreased in CD14+ monocytes from CAD patients and in healthy CD14+ monocytes treated with low-density lipoprotein (LDL). Chromatin immunoprecipitation (ChIP) assays identified MCP1 as a target gene of RFX1. Overexpression of RFX1 increased the recruitments of HDAC1 and SUV39H1 and inhibited the expression of MCP1 in CD14+ monocytes. In contrast, knockdown of RFX1 in CD14+ monocytes reduced the recruitments of HDAC1 and SUV39H1 in the MCP1 promoter region, thereby facilitating H3 and H4 acetylation and H3K9 tri-methylation in this region. In conclusion, our results indicated that RFX1 expression deficiency in CD14+ monocytes from CAD patients contributed to MCP1 overexpression via a deficiency of recruitments of HDAC1 and SUV39H1 in the MCP1 promoter, which highlighted the vital role of RFX1 in the pathogenesis of CAD.
topic monocytes
histone acetylation
monocyte chemoattractant protein-1
regulatory factor X1
epigenetics
url https://www.frontiersin.org/article/10.3389/fgene.2019.01098/full
work_keys_str_mv AT sujiejia regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT sujiejia regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT shuangyang regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT peidu regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT keqingao regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT keqingao regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT yucao regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT baigeyao regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT renguo regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
AT mingzhao regulatoryfactorx1downregulationcontributestomonocytechemoattractantprotein1overexpressionincd14monocytesviaepigeneticmechanismsincoronaryheartdisease
_version_ 1725146180573200384