Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression.
BACKGROUND: Human tissue kallikrein (hTK) plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs) transduced with the adenovirus-mediated hTK gene could improve blood...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3760867?pdf=render |
id |
doaj-0afaaaf8ba18421e8dbf22be579ee899 |
---|---|
record_format |
Article |
spelling |
doaj-0afaaaf8ba18421e8dbf22be579ee8992020-11-25T01:32:08ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0189e7303510.1371/journal.pone.0073035Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression.Shen Shen FuFu Ji LiYuan Yuan WangAn Bei YouYi Liang QieXiao MengJian Rui LiBao Chuan LiYun ZhangQing Da LiBACKGROUND: Human tissue kallikrein (hTK) plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs) transduced with the adenovirus-mediated hTK gene could improve blood flow in rat hindlimb ischemia in vivo and to establish a promising mechanism in vitro. METHODS: EPCs transduced with adenovirus encoding hTK-162 (i.e., Ad/hTK-transduced EPCs or Ad/GFP-transduced EPCs) were administered to Wister rats with hindlimb ischemia through therapeutic neovascularization. Muscular capillary density (MCD), blood flow (BF), and the number of myofibers were measured at days 7, 14, and 21 after treatment. Expressions of integrin αvβ3 and endothelial nitric oxide synthase (eNOS) were detected on the surface of EPCs. RESULTS: MCD, BF, and the number of myofibers in rats with Ad/hTK-transduced EPCs remarkably increased at day 21 after treatment compared with rats with Ad/GFP-transduced EPCs or the control group (P<0.01). Expressions of integrin αvβ3 and eNOS protein on the surface of EPCs also increased in rats with Ad/hTK-transduced EPCs. The levels of integrin αvβ3 expression were reduced by PI3K and eNOS blockade, and the inhibitor of integrin αvβ3 abrogated the migration and adhesion of hTK-transduced EPCs (P<0.05). CONCLUSION: hTK gene delivery in vivo improves the natural angiogenic response to ischemia. The ability of hTK gene-transduced EPCs can be enhanced in vitro, in which integrin αvβ3 plays a role in the process.http://europepmc.org/articles/PMC3760867?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shen Shen Fu Fu Ji Li Yuan Yuan Wang An Bei You Yi Liang Qie Xiao Meng Jian Rui Li Bao Chuan Li Yun Zhang Qing Da Li |
spellingShingle |
Shen Shen Fu Fu Ji Li Yuan Yuan Wang An Bei You Yi Liang Qie Xiao Meng Jian Rui Li Bao Chuan Li Yun Zhang Qing Da Li Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. PLoS ONE |
author_facet |
Shen Shen Fu Fu Ji Li Yuan Yuan Wang An Bei You Yi Liang Qie Xiao Meng Jian Rui Li Bao Chuan Li Yun Zhang Qing Da Li |
author_sort |
Shen Shen Fu |
title |
Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
title_short |
Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
title_full |
Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
title_fullStr |
Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
title_full_unstemmed |
Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
title_sort |
kallikrein gene-modified epcs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
BACKGROUND: Human tissue kallikrein (hTK) plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs) transduced with the adenovirus-mediated hTK gene could improve blood flow in rat hindlimb ischemia in vivo and to establish a promising mechanism in vitro. METHODS: EPCs transduced with adenovirus encoding hTK-162 (i.e., Ad/hTK-transduced EPCs or Ad/GFP-transduced EPCs) were administered to Wister rats with hindlimb ischemia through therapeutic neovascularization. Muscular capillary density (MCD), blood flow (BF), and the number of myofibers were measured at days 7, 14, and 21 after treatment. Expressions of integrin αvβ3 and endothelial nitric oxide synthase (eNOS) were detected on the surface of EPCs. RESULTS: MCD, BF, and the number of myofibers in rats with Ad/hTK-transduced EPCs remarkably increased at day 21 after treatment compared with rats with Ad/GFP-transduced EPCs or the control group (P<0.01). Expressions of integrin αvβ3 and eNOS protein on the surface of EPCs also increased in rats with Ad/hTK-transduced EPCs. The levels of integrin αvβ3 expression were reduced by PI3K and eNOS blockade, and the inhibitor of integrin αvβ3 abrogated the migration and adhesion of hTK-transduced EPCs (P<0.05). CONCLUSION: hTK gene delivery in vivo improves the natural angiogenic response to ischemia. The ability of hTK gene-transduced EPCs can be enhanced in vitro, in which integrin αvβ3 plays a role in the process. |
url |
http://europepmc.org/articles/PMC3760867?pdf=render |
work_keys_str_mv |
AT shenshenfu kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT fujili kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT yuanyuanwang kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT anbeiyou kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT yiliangqie kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT xiaomeng kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT jianruili kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT baochuanli kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT yunzhang kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression AT qingdali kallikreingenemodifiedepcsinduceangiogenesisinratswithischemichindlimbandcorrelatewithintegrinavb3expression |
_version_ |
1725083062467821568 |