Prediction Model of Hot Metal Silicon Content Based on Improved GA-BPNN
The inconsistency of the detection period of blast furnace data and the large time delay of key parameters make the prediction of the hot metal silicon content face huge challenges. Aiming at the problem that the hot metal silicon content is not consistent with the detection period of time series of...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Computational Intelligence and Neuroscience |
Online Access: | http://dx.doi.org/10.1155/2021/1767308 |