Network-guided prediction of aromatase inhibitor response in breast cancer.
Prediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibito...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-02-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC6386390?pdf=render |
id |
doaj-09759d561955487aafc952119d4b6105 |
---|---|
record_format |
Article |
spelling |
doaj-09759d561955487aafc952119d4b61052020-11-25T00:46:04ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582019-02-01152e100673010.1371/journal.pcbi.1006730Network-guided prediction of aromatase inhibitor response in breast cancer.Matthew RuffaloRoby ThomasJian ChenAdrian V LeeSteffi OesterreichZiv Bar-JosephPrediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn novel features that integrate several types of high throughput data and new cell line experiments. These features greatly improve the ability to predict response to AI when compared to prior methods. For a subset of the patients, for which we obtained more detailed clinical information, we can further predict response to a specific AI drug.http://europepmc.org/articles/PMC6386390?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Matthew Ruffalo Roby Thomas Jian Chen Adrian V Lee Steffi Oesterreich Ziv Bar-Joseph |
spellingShingle |
Matthew Ruffalo Roby Thomas Jian Chen Adrian V Lee Steffi Oesterreich Ziv Bar-Joseph Network-guided prediction of aromatase inhibitor response in breast cancer. PLoS Computational Biology |
author_facet |
Matthew Ruffalo Roby Thomas Jian Chen Adrian V Lee Steffi Oesterreich Ziv Bar-Joseph |
author_sort |
Matthew Ruffalo |
title |
Network-guided prediction of aromatase inhibitor response in breast cancer. |
title_short |
Network-guided prediction of aromatase inhibitor response in breast cancer. |
title_full |
Network-guided prediction of aromatase inhibitor response in breast cancer. |
title_fullStr |
Network-guided prediction of aromatase inhibitor response in breast cancer. |
title_full_unstemmed |
Network-guided prediction of aromatase inhibitor response in breast cancer. |
title_sort |
network-guided prediction of aromatase inhibitor response in breast cancer. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Computational Biology |
issn |
1553-734X 1553-7358 |
publishDate |
2019-02-01 |
description |
Prediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn novel features that integrate several types of high throughput data and new cell line experiments. These features greatly improve the ability to predict response to AI when compared to prior methods. For a subset of the patients, for which we obtained more detailed clinical information, we can further predict response to a specific AI drug. |
url |
http://europepmc.org/articles/PMC6386390?pdf=render |
work_keys_str_mv |
AT matthewruffalo networkguidedpredictionofaromataseinhibitorresponseinbreastcancer AT robythomas networkguidedpredictionofaromataseinhibitorresponseinbreastcancer AT jianchen networkguidedpredictionofaromataseinhibitorresponseinbreastcancer AT adrianvlee networkguidedpredictionofaromataseinhibitorresponseinbreastcancer AT steffioesterreich networkguidedpredictionofaromataseinhibitorresponseinbreastcancer AT zivbarjoseph networkguidedpredictionofaromataseinhibitorresponseinbreastcancer |
_version_ |
1725267132069969920 |