Averaging Is Probably Not the Optimum Way of Aggregating Parameters in Federated Learning
Federated learning is a decentralized topology of deep learning, that trains a shared model through data distributed among each client (like mobile phones, wearable devices), in order to ensure data privacy by avoiding raw data exposed in data center (server). After each client computes a new model...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/22/3/314 |