Unit groups of cube radical zero commutative completely primary finite rings
A completely primary finite ring is a ring R with identity 1≠0 whose subset of all its zero-divisors forms the unique maximal ideal J. Let R be a commutative completely primary finite ring with the unique maximal ideal J such that J3=(0) and J2≠(0). Then R/J≅GF(pr) and the characteristic of R is pk,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.579 |