A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type.
The microbiome is a new frontier for building predictors of human phenotypes. However, machine learning in the microbiome is fraught with issues of reproducibility, driven in large part by the wide range of analytic models and metagenomic data types available. We aimed to build robust metagenomic pr...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-05-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1007895 |