Asymptotic Convergence of the Solutions of a Dynamic Equation on Discrete Time Scales

The paper investigates a dynamic equation Δy(tn)=β(tn)[y(tn−j)−y(tn−k)] for n→∞, where k and j are integers such that k>j≥0, on an arbitrary discrete time scale T:={tn} with tn∈ℝ, n∈ℤn0−k∞={n0−k,n0−k+1,…}, n0∈ℕ, tn<tn+1, Δy(tn)=y(tn+1)−y(tn), and limn→∞tn=∞. We assume β:T→(0,∞). It is proved t...

Full description

Bibliographic Details
Main Authors: J. Diblík, M. Růžičková, Z. Šmarda, Z. Šutá
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/580750