Pseudo-Supervised Learning for Semantic Multi-Style Transfer
Numerous methods for style transfer have been developed using unsupervised learning and gained impressive results. However, optimal style transfer cannot be conducted from a global fashion in certain style domains, mainly when a single target-style domain contains semantic objects that have their ow...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9316188/ |