Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning
Our new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit torque in conjunction with the voltage-control-magnetic-anisotropy effect works as the writing principle showed small switching current of <inline-formula> <tex-math notation="LaTeX">$37~\mu \tex...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2018-01-01
|
Series: | IEEE Journal of the Electron Devices Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8531691/ |
id |
doaj-03a3df8d0777445cbb1c3a66abffb36d |
---|---|
record_format |
Article |
spelling |
doaj-03a3df8d0777445cbb1c3a66abffb36d2021-04-05T16:57:03ZengIEEEIEEE Journal of the Electron Devices Society2168-67342018-01-0161233123810.1109/JEDS.2018.28807528531691Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep LearningY. Ohsawa0https://orcid.org/0000-0003-1316-4517H. Yoda1N. Shimomura2S. Shirotori3https://orcid.org/0000-0002-5985-1489S. Fujita4K. Koi5A. Buyandalai6S. Oikawa7M. Shimizu8Y. Kato9T. Inokuchi10H. Sugiyama11M. Ishikawa12https://orcid.org/0000-0001-5403-1767K. Ikegami13https://orcid.org/0000-0002-6234-4568S. Takaya14A. Kurobe15https://orcid.org/0000-0002-7480-6993Corporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanDepartment of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanCorporate Research and Development Center, Toshiba Corporation, Kawasaki, JapanOur new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit torque in conjunction with the voltage-control-magnetic-anisotropy effect works as the writing principle showed small switching current of <inline-formula> <tex-math notation="LaTeX">$37~\mu \text{A}$ </tex-math></inline-formula> for about 350 <inline-formula> <tex-math notation="LaTeX">$K_{B}T$ </tex-math></inline-formula> switching energy. This indicates VoCSM’s writing efficiency is so high that VoCSM would be applicable for deep learning memories requiring ultra-low power consumption.https://ieeexplore.ieee.org/document/8531691/Magnetic memorynonvolatile memorymagnetic tunnelingmagnetic deviceslearning (artificial intelligence)Nanopatterning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Y. Ohsawa H. Yoda N. Shimomura S. Shirotori S. Fujita K. Koi A. Buyandalai S. Oikawa M. Shimizu Y. Kato T. Inokuchi H. Sugiyama M. Ishikawa K. Ikegami S. Takaya A. Kurobe |
spellingShingle |
Y. Ohsawa H. Yoda N. Shimomura S. Shirotori S. Fujita K. Koi A. Buyandalai S. Oikawa M. Shimizu Y. Kato T. Inokuchi H. Sugiyama M. Ishikawa K. Ikegami S. Takaya A. Kurobe Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning IEEE Journal of the Electron Devices Society Magnetic memory nonvolatile memory magnetic tunneling magnetic devices learning (artificial intelligence) Nanopatterning |
author_facet |
Y. Ohsawa H. Yoda N. Shimomura S. Shirotori S. Fujita K. Koi A. Buyandalai S. Oikawa M. Shimizu Y. Kato T. Inokuchi H. Sugiyama M. Ishikawa K. Ikegami S. Takaya A. Kurobe |
author_sort |
Y. Ohsawa |
title |
Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning |
title_short |
Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning |
title_full |
Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning |
title_fullStr |
Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning |
title_full_unstemmed |
Ultra-High-Efficiency Writing in Voltage-Control Spintronics Memory (VoCSM): The Most Promising Embedded Memory for Deep Learning |
title_sort |
ultra-high-efficiency writing in voltage-control spintronics memory (vocsm): the most promising embedded memory for deep learning |
publisher |
IEEE |
series |
IEEE Journal of the Electron Devices Society |
issn |
2168-6734 |
publishDate |
2018-01-01 |
description |
Our new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit torque in conjunction with the voltage-control-magnetic-anisotropy effect works as the writing principle showed small switching current of <inline-formula> <tex-math notation="LaTeX">$37~\mu \text{A}$ </tex-math></inline-formula> for about 350 <inline-formula> <tex-math notation="LaTeX">$K_{B}T$ </tex-math></inline-formula> switching energy. This indicates VoCSM’s writing efficiency is so high that VoCSM would be applicable for deep learning memories requiring ultra-low power consumption. |
topic |
Magnetic memory nonvolatile memory magnetic tunneling magnetic devices learning (artificial intelligence) Nanopatterning |
url |
https://ieeexplore.ieee.org/document/8531691/ |
work_keys_str_mv |
AT yohsawa ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT hyoda ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT nshimomura ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT sshirotori ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT sfujita ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT kkoi ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT abuyandalai ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT soikawa ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT mshimizu ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT ykato ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT tinokuchi ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT hsugiyama ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT mishikawa ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT kikegami ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT stakaya ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning AT akurobe ultrahighefficiencywritinginvoltagecontrolspintronicsmemoryvocsmthemostpromisingembeddedmemoryfordeeplearning |
_version_ |
1721540552256651264 |