Composition of functions
We prove that if f and g are functions from the reals into the reals such that the composition of g with f is continuous and f is both Darboux and surjective, then g is continuous. We also prove that continuous and Darboux can be interchanged in the above statement.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2000-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171200003847 |