Summary: | The static compression between two smooth plates of an axisymmetric capsule or vesicle is investigated by means of asymptotic analysis. The governing equations of the vesicle are derived from thin-shell theory and involve a bending stiffness B, a shear modulus H, the unstressed vesicle radius a and a constant surface-area constraint. The sixth-order free-boundary problem obtained by a balance-of-forces approach is addressed in the limit when the dimensionless parameter C = Ha2/B is large and the plate displacements are small. When the plate displacement is of order aC?1/2, the vesicle undergoes a sub-critical buckling instability which is captured by leading-order asymptotics. Asymptotic linear and quadratic force-displacement relations for the pre- and post-buckled solutions are determined. The leading-order post-buckled solution is described by a simple fourth-order problem, exhibiting stress-focusing with stretching and bending confined to a narrow boundary layer. In contrast, in the pre-buckled state, stretching occurs over a larger length scale than bending. The results are in good qualitative agreement with numerical simulations for finite values of C
|