High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography

High density p-type Bi0.5Sb1.5Te3 nanowire arrays are produced by a combination of electrodeposition and ion-track lithography technology. Initially, the electrodeposition of p-type wBi(0.5)Sb(1.5)Te(3) films is investigated to find out the optimal conditions for the deposition of nanowires. Polyimi...

Full description

Bibliographic Details
Main Authors: Li, Xiaohong (Author), Koukharenko, Elena (Author), Nandhakumar, Iris S. (Author), Tudor, John (Author), Beeby, Steve P. (Author), White, Neil M. (Author)
Format: Article
Language:English
Published: 2009.
Subjects:
Online Access:Get fulltext
Get fulltext
LEADER 01619 am a22001933u 4500
001 66545
042 |a dc 
100 1 0 |a Li, Xiaohong  |e author 
700 1 0 |a Koukharenko, Elena  |e author 
700 1 0 |a Nandhakumar, Iris S.  |e author 
700 1 0 |a Tudor, John  |e author 
700 1 0 |a Beeby, Steve P.  |e author 
700 1 0 |a White, Neil M.  |e author 
245 0 0 |a High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography 
260 |c 2009. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/66545/1/High_density_p-type_Bi0.5Sb1.5Te3_nanowires_by_electrochemical.pdf 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/66545/2/PCCP_09_Bi05Sb15Te3.pdf 
520 |a High density p-type Bi0.5Sb1.5Te3 nanowire arrays are produced by a combination of electrodeposition and ion-track lithography technology. Initially, the electrodeposition of p-type wBi(0.5)Sb(1.5)Te(3) films is investigated to find out the optimal conditions for the deposition of nanowires. Polyimide-based Kapton foils are chosen as a polymer for ion track irradiation and nanotemplating Bi0.5Sb1.5Te3 nanowires. The obtained nanowires have average diameters of 80 nm and lengths of 20 mu m, which are equivalent to the pore size and thickness of Kapton foils. The nanowires exhibit a preferential orientation along the {110} plane with a composition of 11.26 at.% Bi, 26.23 at.% Sb, and 62.51 at.% Te. Temperature dependence studies of the electrical resistance show the semiconducting nature of the nanowires with a negative temperature coefficient of resistance and band gap energy of 0.089 +/- 0.006 eV. 
655 7 |a Article