Optimal designs for testing the functional form of a regression via nonparametric estimation techniques

For the problem of checking linearity in a heteroscedastic nonparametric regression model under a fixed design assumption we study maximin designs which maximize the minimum power of a nonparametric test over a broad class of alternatives from the assumed linear regression model. It is demonstrated...

Full description

Bibliographic Details
Main Authors: Biedermann, Stefanie (Author), Dette, Holger (Author)
Format: Article
Language:English
Published: 2001-04-01.
Subjects:
Online Access:Get fulltext
LEADER 01115 am a22001333u 4500
001 42206
042 |a dc 
100 1 0 |a Biedermann, Stefanie  |e author 
700 1 0 |a Dette, Holger  |e author 
245 0 0 |a Optimal designs for testing the functional form of a regression via nonparametric estimation techniques 
260 |c 2001-04-01. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/42206/1/Power.pdf 
520 |a For the problem of checking linearity in a heteroscedastic nonparametric regression model under a fixed design assumption we study maximin designs which maximize the minimum power of a nonparametric test over a broad class of alternatives from the assumed linear regression model. It is demonstrated that the optimal design depends sensitively on the used estimation technique (i.e. weighted or ordinary least squares) and on an inner product used in the definiton of the class of alternatives. Our results extend and put recent findings of Wiens (1991) in a new light, who established the maximin optimality of the uniform design for lack-of-fit tests in homoscedastic multiple linear regression models. 
655 7 |a Article