Invariant approach to <i>CP</i> in unbroken Δ(27)

The invariant approach is a powerful method for studying <i>CP</i> violation for specific Lagrangians. The method is particularly useful for dealing with discrete family symmetries. We focus on the <i>CP</i> properties of unbroken Δ(27) invariant Lagrangians with Yukawa-like...

Full description

Bibliographic Details
Main Authors: Branco, Gustavo C. (Author), de Medeiros Varzielas, Ivo (Author), King, Stephen F. (Author)
Format: Article
Language:English
Published: 2015-10.
Subjects:
Online Access:Get fulltext
Get fulltext
LEADER 01434 am a22001813u 4500
001 383772
042 |a dc 
100 1 0 |a Branco, Gustavo C.  |e author 
700 1 0 |a de Medeiros Varzielas, Ivo  |e author 
700 1 0 |a King, Stephen F.  |e author 
245 0 0 |a Invariant approach to <i>CP</i> in unbroken Δ(27) 
260 |c 2015-10. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/383772/1/__userfiles.soton.ac.uk_Library_SLAs_Work_for_ALL%2527s_Work_for_ePrints_Accepted%2520Manuscripts_Branco_Invariant.pdf 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/383772/2/1_s2.0_S0550321315002643_main.pdf 
520 |a The invariant approach is a powerful method for studying <i>CP</i> violation for specific Lagrangians. The method is particularly useful for dealing with discrete family symmetries. We focus on the <i>CP</i> properties of unbroken Δ(27) invariant Lagrangians with Yukawa-like terms, which proves to be a rich framework, with distinct aspects of <i>CP</i>, making it an ideal group to investigate with the invariant approach. We classify Lagrangians depending on the number of fields transforming as irreducible triplet representations of Δ(27). For each case, we construct <i>CP</i>-odd weak basis invariants and use them to discuss the respective <i>CP</i> properties. We find that <i>CP</i> violation is sensitive to the number and type of Δ(27) representations. 
540 |a cc_by_4 
540 |a cc_by_4 
655 7 |a Article