Photon tunneling into a single-mode planar silicon waveguide

We demonstrate the direct excitation of a single TE mode in 25 nm thick planar crystalline silicon waveguide by photon tunneling from a layer of fluorescent dye molecules deposited by the Langmuir-Blodgett technique. The observed photon tunneling rate as a function of the dye-silicon separation is w...

Full description

Bibliographic Details
Main Authors: Fang, L. (Author), Kiang, K.S (Author), Alderman, N.P (Author), Danos, L. (Author), Markvart, T. (Author)
Format: Article
Language:English
Published: 2015-11-30.
Subjects:
Online Access:Get fulltext
LEADER 01103 am a22001693u 4500
001 381706
042 |a dc 
100 1 0 |a Fang, L.  |e author 
700 1 0 |a Kiang, K.S.  |e author 
700 1 0 |a Alderman, N.P.  |e author 
700 1 0 |a Danos, L.  |e author 
700 1 0 |a Markvart, T.  |e author 
245 0 0 |a Photon tunneling into a single-mode planar silicon waveguide 
260 |c 2015-11-30. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/381706/1/Lipings%2520tunnelling%2520manuscript%2520as%2520submitted.doc 
520 |a We demonstrate the direct excitation of a single TE mode in 25 nm thick planar crystalline silicon waveguide by photon tunneling from a layer of fluorescent dye molecules deposited by the Langmuir-Blodgett technique. The observed photon tunneling rate as a function of the dye-silicon separation is well fitted by a theoretical tunneling rate, which is obtained via a novel approach within the framework of quantum mechanics. We suggest that future ultrathin crystalline silicon solar cells can be made efficient by simple light trapping structures consisting of molecules on silicon. 
655 7 |a Article