Nanoparticles for inhibition of in vitro tumour angiogenesis: synergistic actions of ligand function and laser irradiation
Careful design of nanoparticles plays a crucial role in their biomedical applications. It not only defines the stability of nanoparticles in a biological medium but also programs their biological functionality and specific interactions with cells. Here, an inorganic nanoparticulate system engineered...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2015-05-01.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | Careful design of nanoparticles plays a crucial role in their biomedical applications. It not only defines the stability of nanoparticles in a biological medium but also programs their biological functionality and specific interactions with cells. Here, an inorganic nanoparticulate system engineered to have a dual role as anti-angiogenic and hyperthermic agent is presented. The inorganic rod-shaped core is designed to strongly absorb near-infrared laser irradiation through the surface plasmon resonance and convert it into localized heat, while a peptide coating acts as an anti-angiogenic drug, altogether inhibiting vascular growth. The synergistic dual action provides an improved inhibition of the in vitro tumour angiogenesis, offering new possibilities for the development of nano-engineered anti-angiogenic drugs for therapies. |
---|