The influence of toughening-particles in CFRPs on low velocity impact damage resistance performance

The role of particle-toughening for increasing impact damage resistance in carbon fibre reinforced polymer (CFRP) composites was investigated. Five carbon fibre reinforced systems consisting of four particle-toughened matrices and one system containing no toughening particles were subjected to low v...

Full description

Bibliographic Details
Main Authors: Bull, D.J (Author), Scott, A.E (Author), Spearing, S.M (Author), Sinclair, I. (Author)
Format: Article
Language:English
Published: 2014-03.
Subjects:
Online Access:Get fulltext
Description
Summary:The role of particle-toughening for increasing impact damage resistance in carbon fibre reinforced polymer (CFRP) composites was investigated. Five carbon fibre reinforced systems consisting of four particle-toughened matrices and one system containing no toughening particles were subjected to low velocity impacts ranging from 25 J to 50 J to establish the impact damage resistance of each material system. Synchrotron radiation computed tomography (SRCT) enabled a novel approach for damage assessment and quantification. Toughening mechanisms were detected in the particle-toughened systems consisting of particle-resin debonding, crack-deflection and crack-bridging. Quantification of the bridging behaviour, increase in crack path length and roughness was undertaken. Out of the three toughening mechanisms measured, particle systems exhibited a larger extent of bridging suggesting a significant contribution of this toughening mechanism compared to the system with no particles