Jackknife estimation with a unit root

We study jackknife estimators in a first-order autoregression with a unit root. Non-overlapping sub-sample estimators have different limit distributions, so the jackknife does not fully eliminate first-order bias. We therefore derive explicit limit distributions of the numerator and denominator to c...

Full description

Bibliographic Details
Main Authors: Chambers, Marcus J. (Author), Kyriacou, Maria (Author)
Format: Article
Language:English
Published: 2013-07.
Subjects:
Online Access:Get fulltext
LEADER 00825 am a22001333u 4500
001 351304
042 |a dc 
100 1 0 |a Chambers, Marcus J.  |e author 
700 1 0 |a Kyriacou, Maria  |e author 
245 0 0 |a Jackknife estimation with a unit root 
260 |c 2013-07. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/351304/1/S0167715213000990 
520 |a We study jackknife estimators in a first-order autoregression with a unit root. Non-overlapping sub-sample estimators have different limit distributions, so the jackknife does not fully eliminate first-order bias. We therefore derive explicit limit distributions of the numerator and denominator to calculate the expectations that determine optimal jackknife weights. Simulations show that the resulting jackknife estimator produces substantial reductions in bias and RMSE 
655 7 |a Article