The application of reliability methods in the design of tophat stiffened composite panels under in-plane loading
Composite materials have been widely used in modern engineering fields such as aircraft, space and marine structures due to their high strength-to-weight and stiffness-to-weight ratios. However, structural efficiency gained through the adoption of composite materials can only be guaranteed by unders...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2013-07.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | Composite materials have been widely used in modern engineering fields such as aircraft, space and marine structures due to their high strength-to-weight and stiffness-to-weight ratios. However, structural efficiency gained through the adoption of composite materials can only be guaranteed by understanding the influence of production upon as-designed performance. In particular, topologies that are challenging to production including panels stiffened with pi or tophat stiffeners dominate many engineering applications and often observe complex loading. The design of stiffened composite panels against buckling is a key point of composite structures. While a growing number of studies are related to the reliability analysis of composites few of these relate to the local analysis of more complicated structures. Furthermore for the assessment of these structures in a design environment it is important to have models that allow the rapid assessment of the reliability of these local structures. This paper explores the use of a stochastic approach to the design of stiffened composite panels for which typical applications can be found in composite ship structures. A parametric study is conducted using Navier grillage theory and First-order Reliability Methods to investigate any detectable trend in the safety index with various design parameters. Finally, recommendations are made to provide guidance on applications. |
---|