Summary: | As a promising technique to improve achievable bandwidth efficiency, cognitive radio (CR) has attracted substantial research attention from both the academic and industrial communities. To improve the performance attained by the secondary user (SU), a novel hybrid CR system is proposed, which combines the conventional interweave and underlay paradigms to enhance the chance of the SU to access the spectrum. Queuing theory is invoked in this paper to analyze the impact of the primary user's maximum tolerable delay on the performance of the SU. Multiple queues are assumed for the SU, which is engaged in video communication. Apart from the Poisson traffic generation, we also model the classic Nakagami-m fading channel as a Poisson service process by utilizing the outage probability in the presence of cochannel interference. We optimize both the hybrid interweave/underlay procedure to maximize the average service rate μ_S,max of the SU, as well as the queue's scheduling scheme, for the sake of minimizing the overall average delay (OAD). As a result, the OAD of the SU is reduced by up to 27% and 20%, compared with the proportion and round-robin schemes, respectively.
|