Minimal cubings

We combine ideas of Scott and Swarup on good position for almost invariant subsets of a group with ideas of Sageev on constructing cubings from such sets. We construct cubings which are more canonical than in Sageev's original construction. We also show that almost invariant sets can be chosen...

Full description

Bibliographic Details
Main Authors: Niblo, Graham (Author), Sageev, Michah (Author), Scott, Peter (Author), Swarup, Gadde A. (Author)
Format: Article
Language:English
Published: 2005-04.
Subjects:
Online Access:Get fulltext
LEADER 00726 am a22001573u 4500
001 29823
042 |a dc 
100 1 0 |a Niblo, Graham  |e author 
700 1 0 |a Sageev, Michah  |e author 
700 1 0 |a Scott, Peter  |e author 
700 1 0 |a Swarup, Gadde A.  |e author 
245 0 0 |a Minimal cubings 
260 |c 2005-04. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/29823/1/cubingssubmitted.pdf 
520 |a We combine ideas of Scott and Swarup on good position for almost invariant subsets of a group with ideas of Sageev on constructing cubings from such sets. We construct cubings which are more canonical than in Sageev's original construction. We also show that almost invariant sets can be chosen to be in very good position. 
655 7 |a Article