NARX-based nonlinear system identification using orthogonal least squares basis hunting

An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, which places the RBF or kernel centers at the training input data points a...

Full description

Bibliographic Details
Main Authors: Chen, Sheng (Author), Wang, X.X (Author), Harris, Chris J. (Author)
Format: Article
Language:English
Published: 2008-01-03.
Subjects:
Online Access:Get fulltext
Get fulltext
Description
Summary:An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, which places the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method is adopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance.