Local Regularization Assisted Orthogonal Least Squares Regression

A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least...

Full description

Bibliographic Details
Main Author: Chen, S. (Author)
Format: Article
Language:English
Published: 2006-01.
Subjects:
Online Access:Get fulltext
Get fulltext
Description
Summary:A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least squares (OLS) model selection to produce a very sparse model with good generalization performance is greatly enhanced. Furthermore, with the assistance of local regularization, when to terminate the model selection procedure becomes much clearer. This LROLS algorithm has computational advantages over the recently introduced relevance vector machine (RVM) method.