Multi-output regression using a locally regularised orthogonal least square algorithm

The paper proposes a locally regularised orthogonal least squares (LROLS) algorithm for constructing sparse multi-output regression models that generalise well. By associating each regressor in the regression model with an individual regularisation parameter, the ability for the multi-output orthogo...

Full description

Bibliographic Details
Main Author: Chen, S. (Author)
Format: Article
Language:English
Published: 2002-08.
Subjects:
Online Access:Get fulltext
Get fulltext
LEADER 00861 am a22001333u 4500
001 256833
042 |a dc 
100 1 0 |a Chen, S.  |e author 
245 0 0 |a Multi-output regression using a locally regularised orthogonal least square algorithm 
260 |c 2002-08. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/256833/1/iee_visp2002_149_4.pdf 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/256833/2/mulreg.ps 
520 |a The paper proposes a locally regularised orthogonal least squares (LROLS) algorithm for constructing sparse multi-output regression models that generalise well. By associating each regressor in the regression model with an individual regularisation parameter, the ability for the multi-output orthogonal least squares (OLS) model selection to produce a parsimonious model with good generalisation performance is greatly enhanced. 
655 7 |a Article