Dynamics and gravitational wave signature of collapsar formation

We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-con...

Full description

Bibliographic Details
Main Authors: Ott, C.D (Author), Reisswig, C. (Author), Schnetter, E. (Author), O'Connor, E. (Author), Sperhake, U. (Author), Loeffler, F. (Author), Diener, P. (Author), Abdikamalov, E. (Author), Hawke, I. (Author), Burrows, A. (Author)
Format: Article
Language:English
Published: 2010-12-08.
Subjects:
Online Access:Get fulltext
LEADER 01242 am a22002293u 4500
001 180747
042 |a dc 
100 1 0 |a Ott, C.D.  |e author 
700 1 0 |a Reisswig, C.  |e author 
700 1 0 |a Schnetter, E.  |e author 
700 1 0 |a O'Connor, E.  |e author 
700 1 0 |a Sperhake, U.  |e author 
700 1 0 |a Loeffler, F.  |e author 
700 1 0 |a Diener, P.  |e author 
700 1 0 |a Abdikamalov, E.  |e author 
700 1 0 |a Hawke, I.  |e author 
700 1 0 |a Burrows, A.  |e author 
245 0 0 |a Dynamics and gravitational wave signature of collapsar formation 
260 |c 2010-12-08. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/180747/1/1012.1853v1 
520 |a We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation 
655 7 |a Article