Generation of polycyclic groups

We give a new and self-contained proof of a theorem of Linnell and Warhurst that d(G) - d(?) 1 for finitely generated virtually torsion-free soluble minimax groups G. We also give a simple sufficient condition for the equality d(G) = d(?) to hold when G is virtually abelian.

Bibliographic Details
Main Authors: Kassabov, Martin (Author), Nikolov, Nikolay (Author)
Format: Article
Language:English
Published: 2009-07.
Subjects:
Online Access:Get fulltext
LEADER 00638 am a22001333u 4500
001 155171
042 |a dc 
100 1 0 |a Kassabov, Martin  |e author 
700 1 0 |a Nikolov, Nikolay  |e author 
245 0 0 |a Generation of polycyclic groups 
260 |c 2009-07. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/155171/1/Generation_of_polycyclic_groups.pdf 
520 |a We give a new and self-contained proof of a theorem of Linnell and Warhurst that d(G) - d(?) 1 for finitely generated virtually torsion-free soluble minimax groups G. We also give a simple sufficient condition for the equality d(G) = d(?) to hold when G is virtually abelian. 
655 7 |a Article