Summary: | Optical absorption bands can be used as fingerprints of defects and their charge states in insulators and semiconductors. On the basis of the photochromicity usually shown by such materials, a method is introduced by which the optical bands are assigned to the defects and their charge states. It is based on simultaneous measurements of the light-induced changes of the optical absorption and of the corresponding EPR signals. Moreover, indirectly optical bands of EPR-silent defects can also be labelled in this way, strongly widening the scope of EPR based defect studies. We apply this method to the infrared-sensitive photorefractive system BaTiO3:Rh, where illumination leads to recharging among the valence states Rh5+, Rh4+ and Rh3+. The values of all parameters governing the charge transfers responsible are inferred from the magnitude of the absorption bands, the absolute determination of their absorption cross-sections and the kinetics of the absorption changes under illumination. In contrast to previous investigations, these parameters are deduced independently of photorefractive measurements.
|