Domination in Knödel graphs

Given a graph G and an integer k, it is an NP-complete problem to decide whether G has a dominating set of size at most k. In this paper we study this problem for the Knödel Graph on n vertices using elementary number theory techniques. In particular, we show an explicit upper bound for the dominat...

Full description

Bibliographic Details
Main Authors: Racicot, J. (Author), Rosso, G. (Author)
Format: Article
Language:English
Published: Discrete Mathematics and Theoretical Computer Science 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01053nam a2200181Ia 4500
001 10.46298-dmtcs.7158
008 220630s2022 CNT 000 0 und d
020 |a 14627264 (ISSN) 
245 1 0 |a Domination in Knödel graphs 
260 0 |b Discrete Mathematics and Theoretical Computer Science  |c 2022 
520 3 |a Given a graph G and an integer k, it is an NP-complete problem to decide whether G has a dominating set of size at most k. In this paper we study this problem for the Knödel Graph on n vertices using elementary number theory techniques. In particular, we show an explicit upper bound for the domination number of the Knödel Graph on n vertices any time that we can find a prime number p dividing n for which 2 is a primitive root. © 2022 by the author(s) 
650 0 4 |a Domination 
650 0 4 |a Gossiping problem 
650 0 4 |a Knödel graph 
700 1 0 |a Racicot, J.  |e author 
700 1 0 |a Rosso, G.  |e author 
773 |t Discrete Mathematics and Theoretical Computer Science 
856 |z View Fulltext in Publisher  |u https://doi.org/10.46298/dmtcs.7158