SGEResU-Net for brain tumor segmentation

The precise segmentation of tumor regions plays a pivotal role in the diagnosis and treatment of brain tumors. However, due to the variable location, size, and shape of brain tumors, the automatic segmentation of brain tumors is a relatively challenging application. Recently, U-Net related methods,...

Full description

Bibliographic Details
Main Authors: He, T. (Author), Liu, D. (Author), Sheng, N. (Author), Wang, W. (Author), Zhang, J. (Author)
Format: Article
Language:English
Published: American Institute of Mathematical Sciences 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02667nam a2200445Ia 4500
001 10.3934-mbe.2022261
008 220425s2022 CNT 000 0 und d
020 |a 15471063 (ISSN) 
245 1 0 |a SGEResU-Net for brain tumor segmentation 
260 0 |b American Institute of Mathematical Sciences  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3934/mbe.2022261 
520 3 |a The precise segmentation of tumor regions plays a pivotal role in the diagnosis and treatment of brain tumors. However, due to the variable location, size, and shape of brain tumors, the automatic segmentation of brain tumors is a relatively challenging application. Recently, U-Net related methods, which largely improve the segmentation accuracy of brain tumors, have become the mainstream of this task. Following merits of the 3D U-Net architecture, this work constructs a novel 3D U-Net model called SGEResU-Net to segment brain tumors. SGEResU-Net simultaneously embeds residual blocks and spatial group-wise enhance (SGE) attention blocks into a single 3D U-Net architecture, in which SGE attention blocks are employed to enhance the feature learning of semantic regions and reduce possible noise and interference with almost no extra parameters. Besides, the self-ensemble module is also utilized to improve the segmentation accuracy of brain tumors. Evaluation experiments on the Brain Tumor Segmentation (BraTS) Challenge 2020 and 2021 benchmarks demonstrate the effectiveness of the proposed SGEResU-Net for this medical application. Moreover, it achieves DSC values of 83.31, 91.64 and 86.85%, as well as Hausdorff distances (95%) of 19.278, 5.945 and 7.567 for the enhancing tumor, whole tumor, and tumor core on BraTS 2021 dataset, respectively. © 2022 the Authors. 
650 0 4 |a 3D modeling 
650 0 4 |a Benchmarking 
650 0 4 |a Brain 
650 0 4 |a Brain tumor segmentation 
650 0 4 |a Brain tumors 
650 0 4 |a brian tumor segmentation 
650 0 4 |a Brian tumor segmentation 
650 0 4 |a Brian tumors 
650 0 4 |a Diagnosis 
650 0 4 |a Medical applications 
650 0 4 |a residual module 
650 0 4 |a Residual module 
650 0 4 |a Segmentation accuracy 
650 0 4 |a Semantics 
650 0 4 |a Spatial groups 
650 0 4 |a spatial group-wise enhance 
650 0 4 |a Spatial group-wise enhance 
650 0 4 |a Tumor segmentation 
650 0 4 |a Tumors 
650 0 4 |a U-net 
650 0 4 |a U-Net 
700 1 |a He, T.  |e author 
700 1 |a Liu, D.  |e author 
700 1 |a Sheng, N.  |e author 
700 1 |a Wang, W.  |e author 
700 1 |a Zhang, J.  |e author 
700 1 |a Zhang, J.  |e author 
773 |t Mathematical Biosciences and Engineering