|
|
|
|
LEADER |
02363nam a2200157Ia 4500 |
001 |
10.3847-1538-4357-ac5752 |
008 |
220510s2022 CNT 000 0 und d |
020 |
|
|
|a 0004637X (ISSN)
|
245 |
1 |
0 |
|a Prospects for kSZ2-Galaxy Cross-correlations during Reionization
|
260 |
|
0 |
|b IOP Publishing Ltd
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.3847/1538-4357/ac5752
|
520 |
3 |
|
|a We explore a new approach for extracting reionization-era contributions to the kinetic Sunyaev-Zel'dovich (kSZ) effect. Our method utilizes the cross-power spectrum between filtered and squared maps of the cosmic microwave background (CMB) and photometric galaxy surveys during the Epoch of Reionization (EoR). This kSZ2-galaxy cross-power spectrum statistic has been successfully detected at lower redshifts (z ≲ 1.5). Here we extend this method to z ≳ 6 as a potential means to extract signatures of patchy reionization. We model the expected signal across multiple photometric redshift bins using seminumeric simulations of the reionization process. In principle, the cross-correlation statistic robustly extracts reionization-era contributions to the kSZ signal, while its redshift evolution yields valuable information regarding the timing of reionization. Specifically, the model cross-correlation signal near ℓ ∼1000 peaks during the early stages of the EoR, when about 20% of the volume of the universe is ionized. Detectable ℓ modes mainly reflect squeezed-triangle configurations of the related bispectrum, quantifying correlations between the galaxy overdensity field on large scales and the smaller-scale kSZ power. We forecast the prospects for detecting this signal using future wide-field samples of Lyman-break galaxies from the Roman Space Telescope and next-generation CMB surveys including the Simons Observatory, CMB-S4, and CMB-HD. We find that a roughly 13σ detection is possible for CMB-HD and Roman after summing over all ℓ modes. We discuss the possibilities for improving this approach and related statistics, with the aim of moving beyond simple detections to measure the scale and redshift dependence of the cross-correlation signals. © 2022. The Author(s). Published by the American Astronomical Society.
|
700 |
1 |
|
|a La Plante, P.
|e author
|
700 |
1 |
|
|a Lidz, A.
|e author
|
700 |
1 |
|
|a Sipple, J.
|e author
|
773 |
|
|
|t Astrophysical Journal
|