Generating I-eigenvalue free threshold graphs

A graph is said to be I-eigenvalue free if it has no eigenvalues in the interval I with respect to the adjacency matrix A. In this paper we present two algorithms for generating I-eigenvalue free threshold graphs. © 2023, Australian National University. All rights reserved.

Bibliographic Details
Main Authors: Allem, L.E (Author), Oliveira, E.R (Author), Tura, F. (Author)
Format: Article
Language:English
Published: Australian National University 2023
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 00947nam a2200169Ia 4500
001 10.37236-11225
008 230529s2023 CNT 000 0 und d
020 |a 10778926 (ISSN) 
245 1 0 |a Generating I-eigenvalue free threshold graphs 
260 0 |b Australian National University  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.37236/11225 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159701631&doi=10.37236%2f11225&partnerID=40&md5=cba4d1b9f5adcc2111423aad1478da3d 
520 3 |a A graph is said to be I-eigenvalue free if it has no eigenvalues in the interval I with respect to the adjacency matrix A. In this paper we present two algorithms for generating I-eigenvalue free threshold graphs. © 2023, Australian National University. All rights reserved. 
700 1 0 |a Allem, L.E.  |e author 
700 1 0 |a Oliveira, E.R.  |e author 
700 1 0 |a Tura, F.  |e author 
773 |t Electronic Journal of Combinatorics