Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models

Evapotranspiration (ET) is a significant aspect of the hydrologic cycle, notably in irrigated agriculture. Direct approaches for estimating reference evapotranspiration (ET0) are either difficult or need a large number of inputs that are not always available from meteorological stations. Over a 6-ye...

Full description

Bibliographic Details
Main Authors: Achite, M. (Author), Elshaboury, N. (Author), Jehanzaib, M. (Author), Kim, T.-W (Author), Krakauer, N. (Author), Sattari, M.T (Author), Toubal, A.K (Author), Wałęga, A. (Author), Yoo, J.-Y (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
ANN
GEP
Online Access:View Fulltext in Publisher
LEADER 02958nam a2200541Ia 4500
001 10.3390-w14081210
008 220510s2022 CNT 000 0 und d
020 |a 20734441 (ISSN) 
245 1 0 |a Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/w14081210 
520 3 |a Evapotranspiration (ET) is a significant aspect of the hydrologic cycle, notably in irrigated agriculture. Direct approaches for estimating reference evapotranspiration (ET0) are either difficult or need a large number of inputs that are not always available from meteorological stations. Over a 6-year period (2006–2011), this study compares Feed Forward Neural Network (FFNN), Radial Basis Function Neural Network (RBFNN), and Gene Expression Programming (GEP) machine learning approaches for estimating daily ET0 in a meteorological station in the Lower Cheliff Plain, northwest Algeria. ET0 was estimated using the FAO-56 Penman–Monteith (FAO56PM) equation and observed meteorological data. The estimated ET0 using FAO56PM was then used as the target output for the machine learning models, while the observed meteorological data were used as the model inputs. Based on the coefficient of determination (R2), root mean square error (RMSE), and Nash–Sutcliffe efficiency (EF), the RBFNN and GEP models showed promising performance. However, the FFNN model performed the best during training (R2 = 0.9903, RMSE = 0.2332, and EF = 0.9902) and testing (R2 = 0.9921, RMSE = 0.2342, and EF = 0.9902) phases in forecasting the Penman–Monteith evapotranspiration. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Algeria 
650 0 4 |a Algeria 
650 0 4 |a Algeria 
650 0 4 |a ANN 
650 0 4 |a ANN 
650 0 4 |a artificial neural network 
650 0 4 |a evapotranspiration 
650 0 4 |a FAO-56 penman–monteith 
650 0 4 |a FAO-56 Penman–Monteith 
650 0 4 |a Gene expression 
650 0 4 |a Gene-expression programming 
650 0 4 |a GEP 
650 0 4 |a hydrological cycle 
650 0 4 |a Low cheliff 
650 0 4 |a Lower Cheliff 
650 0 4 |a Machine learning 
650 0 4 |a Mean square error 
650 0 4 |a Meteorological station 
650 0 4 |a Meteorology 
650 0 4 |a Penman Monteith 
650 0 4 |a Penman-Monteith equation 
650 0 4 |a Programming models 
650 0 4 |a Radial basis function networks 
650 0 4 |a reference evapotranspiration 
650 0 4 |a Reference evapotranspiration 
650 0 4 |a Root mean square errors 
700 1 |a Achite, M.  |e author 
700 1 |a Elshaboury, N.  |e author 
700 1 |a Jehanzaib, M.  |e author 
700 1 |a Kim, T.-W.  |e author 
700 1 |a Krakauer, N.  |e author 
700 1 |a Sattari, M.T.  |e author 
700 1 |a Toubal, A.K.  |e author 
700 1 |a Wałęga, A.  |e author 
700 1 |a Yoo, J.-Y.  |e author 
773 |t Water (Switzerland)