Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosi...

Full description

Bibliographic Details
Main Authors: Fukuda, T. (Author), Hayashi, H. (Author), Ishibashi, F. (Author), Iwao, M. (Author), Izumida, M. (Author), Kotani, O. (Author), Kubo, Y. (Author), Sato, H. (Author), Smith, C. (Author), Suga, K. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03225nam a2200589Ia 4500
001 10.3390-v14040816
008 220510s2022 CNT 000 0 und d
020 |a 19994915 (ISSN) 
245 1 0 |a Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/v14040816 
520 3 |a Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication. 
650 0 4 |a alkaloid 
650 0 4 |a Alkaloids 
650 0 4 |a antiviral action 
650 0 4 |a Antiviral Agents 
650 0 4 |a antiviral mechanism 
650 0 4 |a antivirus agent 
650 0 4 |a chemistry 
650 0 4 |a COVID-19 
650 0 4 |a dextran sulfate 
650 0 4 |a Dextran Sulfate 
650 0 4 |a docking simulation 
650 0 4 |a Ebola hemorrhagic fever 
650 0 4 |a Ebolavirus 
650 0 4 |a emerging viruses 
650 0 4 |a glycoprotein 
650 0 4 |a Glycoproteins 
650 0 4 |a Hemorrhagic Fever, Ebola 
650 0 4 |a heparin 
650 0 4 |a Heparin 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a lamellarin α 20-sulfate 
650 0 4 |a marine alkaloid 
650 0 4 |a metabolism 
650 0 4 |a molecular dynamics simulation 
650 0 4 |a pseudotyped lentiviral vector 
650 0 4 |a SARS-CoV-2 
650 0 4 |a virus entry 
650 0 4 |a Virus Internalization 
700 1 |a Fukuda, T.  |e author 
700 1 |a Hayashi, H.  |e author 
700 1 |a Ishibashi, F.  |e author 
700 1 |a Iwao, M.  |e author 
700 1 |a Izumida, M.  |e author 
700 1 |a Kotani, O.  |e author 
700 1 |a Kubo, Y.  |e author 
700 1 |a Sato, H.  |e author 
700 1 |a Smith, C.  |e author 
700 1 |a Suga, K.  |e author 
773 |t Viruses