V-Quasi-Bi-Slant Riemannian Maps

In this work, we define a v-quasi-bi-slant Riemannian map (in brief, v-QBSR map) from almost Hermitian manifolds to Riemannian manifolds. This notion generalizes both a v-hemi slant Riemannian map and a v-semi slant Riemannian map. The geometry of leaves of distributions that are associated with the...

Full description

Bibliographic Details
Main Authors: Bilal, M. (Author), Chen, Z. (Author), Haseeb, A. (Author), Kumar, S. (Author), Prasad, R. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01240nam a2200229Ia 4500
001 10.3390-sym14071360
008 220718s2022 CNT 000 0 und d
020 |a 20738994 (ISSN) 
245 1 0 |a V-Quasi-Bi-Slant Riemannian Maps 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/sym14071360 
520 3 |a In this work, we define a v-quasi-bi-slant Riemannian map (in brief, v-QBSR map) from almost Hermitian manifolds to Riemannian manifolds. This notion generalizes both a v-hemi slant Riemannian map and a v-semi slant Riemannian map. The geometry of leaves of distributions that are associated with the definition of such maps is studied. The conditions for v-QBSR maps to be integrable and totally geodesic are also obtained in the paper. Finally, we provide the examples of v-QBSR maps. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Kähler manifolds 
650 0 4 |a Riemannian map 
650 0 4 |a semi-invariant Riemannian map 
650 0 4 |a v-Quasi-bi-slant Riemannian map 
700 1 |a Bilal, M.  |e author 
700 1 |a Chen, Z.  |e author 
700 1 |a Haseeb, A.  |e author 
700 1 |a Kumar, S.  |e author 
700 1 |a Prasad, R.  |e author 
773 |t Symmetry  |x 20738994 (ISSN)  |g 14 7