Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks

Intrusion detection systems (IDS) play a crucial role in securing networks and identifying malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic optimization algorithms and deep learning techniques have been applied to IDS to improve their accuracy and effi...

Full description

Bibliographic Details
Main Authors: Abd Elaziz, M. (Author), Alfadhli, S.A (Author), Al-qaness, M.A.A (Author), Alresheedi, S.S (Author), Dahou, A. (Author), Fatani, A. (Author), Lu, S. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03065nam a2200529Ia 4500
001 10.3390-s23094430
008 230529s2023 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s23094430 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159157443&doi=10.3390%2fs23094430&partnerID=40&md5=89c3ceb746114c02cc63a3bdac015350 
520 3 |a Intrusion detection systems (IDS) play a crucial role in securing networks and identifying malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic optimization algorithms and deep learning techniques have been applied to IDS to improve their accuracy and efficiency. Generally, optimization algorithms can be used to boost the performance of IDS models. Deep learning methods, such as convolutional neural networks, have also been used to improve the ability of IDS to detect and classify intrusions. In this paper, we propose a new IDS model based on the combination of deep learning and optimization methods. First, a feature extraction method based on CNNs is developed. Then, a new feature selection method is used based on a modified version of Growth Optimizer (GO), called MGO. We use the Whale Optimization Algorithm (WOA) to boost the search process of the GO. Extensive evaluation and comparisons have been conducted to assess the quality of the suggested method using public datasets of cloud and Internet of Things (IoT) environments. The applied techniques have shown promising results in identifying previously unknown attacks with high accuracy rates. The MGO performed better than several previous methods in all experimental comparisons. © 2023 by the authors. 
650 0 4 |a Cloud environments 
650 0 4 |a CNNs 
650 0 4 |a Computer crime 
650 0 4 |a Convolutional neural networks 
650 0 4 |a cyber security 
650 0 4 |a Cyber security 
650 0 4 |a Cybersecurity 
650 0 4 |a Deep learning 
650 0 4 |a Feature extraction 
650 0 4 |a Growth optimizer 
650 0 4 |a Growth Optimizer 
650 0 4 |a Internet of thing 
650 0 4 |a Internet of things 
650 0 4 |a Internet of Things (IoT) 
650 0 4 |a Intrusion detection 
650 0 4 |a intrusion detection system 
650 0 4 |a Intrusion Detection Systems 
650 0 4 |a Learning methods 
650 0 4 |a Learning systems 
650 0 4 |a Metaheuristic 
650 0 4 |a metaheuristics 
650 0 4 |a Network security 
650 0 4 |a Optimization 
650 0 4 |a Optimization algorithms 
650 0 4 |a Optimizers 
650 0 4 |a System models 
700 1 0 |a Abd Elaziz, M.  |e author 
700 1 0 |a Alfadhli, S.A.  |e author 
700 1 0 |a Al-qaness, M.A.A.  |e author 
700 1 0 |a Alresheedi, S.S.  |e author 
700 1 0 |a Dahou, A.  |e author 
700 1 0 |a Fatani, A.  |e author 
700 1 0 |a Lu, S.  |e author 
773 |t Sensors