Semi-Supervised Deep Kernel Active Learning for Material Removal Rate Prediction in Chemical Mechanical Planarization

The material removal rate (MRR) is an important variable but difficult to measure in the chemical–mechanical planarization (CMP) process. Most data-based virtual metrology (VM) methods ignore the large number of unlabeled samples, resulting in a waste of information. In this paper, the semi-supervis...

Full description

Bibliographic Details
Main Authors: Huang, J. (Author), Lv, C. (Author), Wang, H. (Author), Zhang, M. (Author), Zhang, T. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03312nam a2200637Ia 4500
001 10.3390-s23094392
008 230529s2023 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Semi-Supervised Deep Kernel Active Learning for Material Removal Rate Prediction in Chemical Mechanical Planarization 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s23094392 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159182652&doi=10.3390%2fs23094392&partnerID=40&md5=8376d9e200b377e159493ad931d98763 
520 3 |a The material removal rate (MRR) is an important variable but difficult to measure in the chemical–mechanical planarization (CMP) process. Most data-based virtual metrology (VM) methods ignore the large number of unlabeled samples, resulting in a waste of information. In this paper, the semi-supervised deep kernel active learning (SSDKAL) model is proposed. Clustering-based phase partition and phase-matching algorithms are used for the initial feature extraction, and a deep network is used to replace the kernel of Gaussian process regression so as to extract hidden deep features. Semi-supervised regression and active learning sample selection strategies are applied to make full use of information on the unlabeled samples. The experimental results of the CMP process dataset validate the effectiveness of the proposed method. Compared with supervised regression and co-training-based semi-supervised regression algorithms, the proposed model has a lower mean square error with different labeled sample proportions. Compared with other frameworks proposed in the literature, such as physics-based VM models, Gaussian-process-based regression models, and stacking models, the proposed method achieves better prediction results without using all the labeled samples. © 2023 by the authors. 
650 0 4 |a active learning 
650 0 4 |a Active Learning 
650 0 4 |a algorithm 
650 0 4 |a article 
650 0 4 |a Chemical-mechanical planarization process 
650 0 4 |a Clustering algorithms 
650 0 4 |a controlled study 
650 0 4 |a deep kernel learning 
650 0 4 |a Deep kernel learning 
650 0 4 |a Deep learning 
650 0 4 |a E-learning 
650 0 4 |a feature extraction 
650 0 4 |a Gaussian distribution 
650 0 4 |a Gaussian noise (electronic) 
650 0 4 |a Information use 
650 0 4 |a Kernel learning 
650 0 4 |a learning 
650 0 4 |a Learning algorithms 
650 0 4 |a Learning systems 
650 0 4 |a Material removal rate 
650 0 4 |a Mean square error 
650 0 4 |a mean squared error 
650 0 4 |a phase match 
650 0 4 |a Phase match 
650 0 4 |a Phase matching 
650 0 4 |a phase partition 
650 0 4 |a Phase partition 
650 0 4 |a physics 
650 0 4 |a prediction 
650 0 4 |a Principal component analysis 
650 0 4 |a Regression analysis 
650 0 4 |a regression model 
650 0 4 |a Semi-supervised 
650 0 4 |a semi-supervised regression 
650 0 4 |a Semi-supervised regression 
650 0 4 |a virtual metrology 
650 0 4 |a Virtual metrology 
700 1 0 |a Huang, J.  |e author 
700 1 0 |a Lv, C.  |e author 
700 1 0 |a Wang, H.  |e author 
700 1 0 |a Zhang, M.  |e author 
700 1 0 |a Zhang, T.  |e author 
773 |t Sensors