Powder Bed Monitoring Using Semantic Image Segmentation to Detect Failures during 3D Metal Printing

Monitoring the metal Additive Manufacturing (AM) process is an important task within the scope of quality assurance. This article presents a method to gain insights into process quality by comparing the actual and target layers. Images of the powder bed were captured and segmented using an Xception–...

Full description

Bibliographic Details
Main Authors: Höfflin, D. (Author), Sauer, C. (Author), Schiffler, A. (Author), Schmitt, A.-M (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02514nam a2200457Ia 4500
001 10.3390-s23094183
008 230529s2023 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Powder Bed Monitoring Using Semantic Image Segmentation to Detect Failures during 3D Metal Printing 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s23094183 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159341773&doi=10.3390%2fs23094183&partnerID=40&md5=7edbb2b2164a41f2e61f1ef009ad5630 
520 3 |a Monitoring the metal Additive Manufacturing (AM) process is an important task within the scope of quality assurance. This article presents a method to gain insights into process quality by comparing the actual and target layers. Images of the powder bed were captured and segmented using an Xception–style neural network to predict the powder and part areas. The segmentation result of every layer is compared to the reference layer regarding the area, centroids, and normalized area difference of each part. To evaluate the method, a print job with three parts was chosen where one of them broke off and another one had thermal deformations. The calculated metrics are useful for detecting if a part is damaged or for identifying thermal distortions. The method introduced by this work can be used to monitor the metal AM process for quality assurance. Due to the limited camera resolutions and inconsistent lighting conditions, the approach has some limitations, which are discussed at the end. © 2023 by the authors. 
650 0 4 |a 3d metals 
650 0 4 |a 3D printing 
650 0 4 |a additive manufacturing 
650 0 4 |a Additive manufacturing process 
650 0 4 |a Additives 
650 0 4 |a in situ monitoring 
650 0 4 |a In-situ monitoring 
650 0 4 |a Metal additives 
650 0 4 |a metal printing 
650 0 4 |a Metal printings 
650 0 4 |a neural network 
650 0 4 |a Neural-networks 
650 0 4 |a Powder bed 
650 0 4 |a Powder metals 
650 0 4 |a Quality assurance 
650 0 4 |a Semantic image segmentations 
650 0 4 |a semantic segmentation 
650 0 4 |a Semantic segmentation 
650 0 4 |a Semantic Segmentation 
650 0 4 |a Semantic Web 
650 0 4 |a Semantics 
650 0 4 |a thermal distortion 
650 0 4 |a Thermal distortions 
700 1 0 |a Höfflin, D.  |e author 
700 1 0 |a Sauer, C.  |e author 
700 1 0 |a Schiffler, A.  |e author 
700 1 0 |a Schmitt, A.-M.  |e author 
773 |t Sensors