Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification

Multispectral sensors are important instruments for Earth observation. In remote sensing applications, the near-infrared (NIR) band, together with the visible spectrum (RGB), provide abundant information about ground objects. However, the NIR band is typically not available on low-cost camera system...

Full description

Bibliographic Details
Main Authors: Reinartz, P. (Author), Tian, J. (Author), Yuan, X. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
NIR
RGB
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02420nam a2200397Ia 4500
001 10.3390-s23094179
008 230529s2023 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s23094179 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159334636&doi=10.3390%2fs23094179&partnerID=40&md5=19cf41c5cc4d44054e5b0652e7ee0dd6 
520 3 |a Multispectral sensors are important instruments for Earth observation. In remote sensing applications, the near-infrared (NIR) band, together with the visible spectrum (RGB), provide abundant information about ground objects. However, the NIR band is typically not available on low-cost camera systems, which presents challenges for the vegetation extraction. To this end, this paper presents a conditional generative adversarial network (cGAN) method to simulate the NIR band from RGB bands of Sentinel-2 multispectral data. We adapt a robust loss function and a structural similarity index loss (SSIM) in addition to the GAN loss to improve the model performance. With 45,529 multi-seasonal test images across the globe, the simulated NIR band had a mean absolute error of 0.02378 and an SSIM of 89.98%. A rule-based landcover classification using the simulated normalized difference vegetation index (NDVI) achieved a Jaccard score of 89.50%. The evaluation metrics demonstrated the versatility of the learning-based paradigm in remote sensing applications. Our simulation approach is flexible and can be easily adapted to other spectral bands. © 2023 by the authors. 
650 0 4 |a cGAN 
650 0 4 |a Conditional generative adversarial network 
650 0 4 |a Generative adversarial networks 
650 0 4 |a Infrared devices 
650 0 4 |a multispectral 
650 0 4 |a Multi-spectral 
650 0 4 |a Near Infrared 
650 0 4 |a Near-infrared 
650 0 4 |a NIR 
650 0 4 |a remote sensing 
650 0 4 |a Remote sensing 
650 0 4 |a Remote-sensing 
650 0 4 |a RGB 
650 0 4 |a robust loss 
650 0 4 |a Robust loss 
650 0 4 |a SEN12MS 
650 0 4 |a Sentinel-2 
650 0 4 |a SSIM 
650 0 4 |a Vegetation 
700 1 0 |a Reinartz, P.  |e author 
700 1 0 |a Tian, J.  |e author 
700 1 0 |a Yuan, X.  |e author 
773 |t Sensors