Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation in Depth Sensor Images

The identification of human activities from videos is important for many applications. For such a task, three-dimensional (3D) depth images or image sequences (videos) can be used, which represent the positioning information of the objects in a 3D scene obtained from depth sensors. This paper presen...

Full description

Bibliographic Details
Main Authors: Blažauskas, T. (Author), Damaševičius, R. (Author), Maskeliūnas, R. (Author), Ryselis, K. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02175nam a2200373Ia 4500
001 10.3390-s22093531
008 220706s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation in Depth Sensor Images 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093531 
520 3 |a The identification of human activities from videos is important for many applications. For such a task, three-dimensional (3D) depth images or image sequences (videos) can be used, which represent the positioning information of the objects in a 3D scene obtained from depth sensors. This paper presents a framework to create foreground–background masks from depth images for human body segmentation. The framework can be used to speed up the manual depth image annotation process with no semantics known beforehand and can apply segmentation using a performant algorithm while the user only adjusts the parameters, or corrects the automatic segmentation results, or gives it hints by drawing a boundary of the desired object. The approach has been tested using two different datasets with a human in a real-world closed environment. The solution has provided promising results in terms of reducing the manual segmentation time from the perspective of the processing time as well as the human input time. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Body segmentations 
650 0 4 |a Computer-aided 
650 0 4 |a Depth image 
650 0 4 |a depth images 
650 0 4 |a Depth sensors 
650 0 4 |a Depth videos 
650 0 4 |a Human bodies 
650 0 4 |a human body segmentation 
650 0 4 |a Human body segmentation 
650 0 4 |a image processing 
650 0 4 |a Images processing 
650 0 4 |a point cloud 
650 0 4 |a Point-clouds 
650 0 4 |a Semantic Segmentation 
650 0 4 |a Semantics 
650 0 4 |a Sensor images 
650 0 4 |a Video streaming 
700 1 0 |a Blažauskas, T.  |e author 
700 1 0 |a Damaševičius, R.  |e author 
700 1 0 |a Maskeliūnas, R.  |e author 
700 1 0 |a Ryselis, K.  |e author 
773 |t Sensors