A Soft Multi‐Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems

This paper presents a multi‐axis low‐cost soft magnetic tactile sensor with a high force range for force feedback in robotic surgical systems. The proposed sensor is designed to fully decouple the output response for normal, shear and angular forces. The proposed sensor is fabricated using rapid pro...

Full description

Bibliographic Details
Main Authors: Cheung, R. (Author), Rehan, M. (Author), Saleem, M.M (Author), Shakoor, R.I (Author), Tiwana, M.I (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02860nam a2200505Ia 4500
001 10.3390-s22093500
008 220706s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a A Soft Multi‐Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093500 
520 3 |a This paper presents a multi‐axis low‐cost soft magnetic tactile sensor with a high force range for force feedback in robotic surgical systems. The proposed sensor is designed to fully decouple the output response for normal, shear and angular forces. The proposed sensor is fabricated using rapid prototyping techniques and utilizes Neodymium magnets embedded in an elastomer over Hall sensors such that their displacement produces a voltage change that can be used to calculate the applied force. The initial spacing between the magnets and the Hall sensors is optimized to achieve a large displacement range using finite element method (FEM) simulations. The experimental characterization of the proposed sensor is performed for applied force in normal, shear and 45° angular direction. The force sensitivity of the proposed sensor in normal, shear and angular directions is 16 mV/N, 30 mV/N and 81 mV/N, respectively, with minimum mechanical crosstalk. The force range for the normal, shear and angular direction is obtained as 0–20 N, 0–3.5 N and 0–1.5 N, respectively. The proposed sensor shows a perfectly linear behavior and a low hysteresis error of 8.3%, making it suitable for tactile sensing and biomedical applications. The effect of the material properties of the elastomer on force ranges and sensitivity values of the proposed sensor is also discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Applied forces 
650 0 4 |a elastomer 
650 0 4 |a Elastomers 
650 0 4 |a Feedback 
650 0 4 |a force range 
650 0 4 |a Force range 
650 0 4 |a Force-feedback 
650 0 4 |a Hall effect transducers 
650 0 4 |a Hall sensor 
650 0 4 |a Hall sensor 
650 0 4 |a magnetic tactile sensor 
650 0 4 |a Magnetic tactile sensor 
650 0 4 |a Magnetism 
650 0 4 |a Magnets 
650 0 4 |a Medical applications 
650 0 4 |a multi‐axis 
650 0 4 |a Multi-Axis 
650 0 4 |a Multi-Axis- 
650 0 4 |a Neodymium alloys 
650 0 4 |a Plastics 
650 0 4 |a robotic surgery 
650 0 4 |a Robotic surgery 
650 0 4 |a Robotic surgical systems 
650 0 4 |a Robotics 
650 0 4 |a Robotics surgery 
650 0 4 |a Surgical equipment 
650 0 4 |a Tactile sensors 
700 1 0 |a Cheung, R.  |e author 
700 1 0 |a Rehan, M.  |e author 
700 1 0 |a Saleem, M.M.  |e author 
700 1 0 |a Shakoor, R.I.  |e author 
700 1 0 |a Tiwana, M.I.  |e author 
773 |t Sensors