Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber
Abstract: A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014
|
Subjects: | |
Online Access: | View Fulltext in Publisher View in Scopus |
LEADER | 02039nam a2200277Ia 4500 | ||
---|---|---|---|
001 | 10.3390-polym6092371 | ||
008 | 220112s2014 CNT 000 0 und d | ||
020 | |a 20734360 (ISSN) | ||
245 | 1 | 0 | |a Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber |
260 | 0 | |b MDPI AG |c 2014 | |
856 | |z View Fulltext in Publisher |u https://doi.org/10.3390/polym6092371 | ||
856 | |z View in Scopus |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910037962&doi=10.3390%2fpolym6092371&partnerID=40&md5=d50c1f064dcad4af101dac36eab58848 | ||
520 | 3 | |a Abstract: A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC-CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10-4 S cm-1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells. © 2014 by the authors. | |
650 | 0 | 4 | |a Ammonium acetate |
650 | 0 | 4 | |a Biopolymer electrolyte |
650 | 0 | 4 | |a Biopolymer electrolytes |
650 | 0 | 4 | |a Electrochemical stabilities |
650 | 0 | 4 | |a electrochemical stability |
650 | 0 | 4 | |a Fourier transform infrared spectroscopy |
650 | 0 | 4 | |a Fourier transform infrared spectroscopy (FTIR) |
650 | 0 | 4 | |a Kenaf bast fibers |
700 | 1 | 0 | |a Ahmad, A. |e author |
700 | 1 | 0 | |a Mohamed, N.S. |e author |
700 | 1 | 0 | |a Rani, M.S.A. |e author |
700 | 1 | 0 | |a Rudhziah, S. |e author |
773 | |t Polymers |